USE OF SINGLE~POINT VELOCITY PROBABILITY
DISTRIBUTIONS IN DESCRIBING TURBULENT FLOWS

V. A. Sabel'nikov UDC 532.517.4

A semiemprical equation for the single-point velocity probability distribution in turbulent flows is sug-
gested and analyzed. The inertia forces in the equations are exactly expressed in terms of probability distribu-
tions. The remaining terms, related to pressure forces and viscosity, are not accurately expressed in terms
of the true probability distributions, and semiempirical expressions are used to approximate them. Some
arbitrariness is generated in approximating the pressure term. & is selected from the coincidence condition
of the corresponding terms in the equations for the second moments, following from the equation for the prob-
ability distributions and used in the available semiempirical theories.

One of the main features of the equation obtained is its nonlocality, which agrees, at least qualitatively,
with contemporary concepts on laws of turbulent transport. The energy dissipation velocity, the fundamental’
characteristic of turbulence, plays an important role in the equation.

The solution of the equation is a normal distribution in the flow regions where the energy balance of
turbulent motion reduces basically to generation and dissipation. This conclusion is in satisfactory qualitative
agreement with experimental data in a logarithmic layer.

1. Basic Equations. The exact nonclosed equation for the single-point probability distribution, obtained
in [1-4] from the Navier —Stokes equations, is
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where P(u, x, t) is the velocity probability distribution; t, time; xy, point coordinates k=1, 2, 3); uy, hydro-
dynamic velocity; &;; =v[(u;/8x) (auj/ 3xy)], instant velocity tensor of energy dissipation; v, molecular viscosity
coefficient; m = (ap/‘ 8x))uPs p, kinematic pressure; and the symbols (Y, ¢ ), denote, respectively, total @n~
conditional) averaging and averaging for a given value of u. Repeated subscripts denote henceforth summation

from 1 to 3.

The first two terms in (1.1) describe inertial forces, the third —~ pressure forces, and the last two —
viscous forces. It is important that the inertia forces are exactly expressed in terms of the true probability
distribution. This is the main advantage of using the probability distribution rather than available semiempiri-
cal theories for second moments. As is well known, the third momeut approximation is guite complicated in
these equations. Pressure and viscosity forces are not exactly expressed in terms of P ), and therefore, as
well as in the semiempirical theories for second moments, the approximation of these terms requires the in-
clusion of nonrigid considerations. The analogy with kinetic theory was used with this purpose in [5-8]. In [8]
one finds general considerations on the closure of these equations for finite~dimensional probability distribu-
tions. Tn the present work we use a different variant of closure, based on the results of {3, 4],

Consider first viscous forces. For large Reynolds numbers and outside regions immediately adjacent
to the walls (conditions assumed to be satisfied in what follows, the last term in (1.1}, deseribing diffusion of
averaged characteristics due to molecular viscosity, can be omitted. Following [3, 4], for the quantity (sij}u
we adopt the hypothesis

Ceijbu = (13)KeD8yy, & == v, 1.2)
where (&) is the dissipation velocity of turbulence energy.

The quantity (&, Was experimentally measured [9], where it was established that (1.2) is a good approx-
imation, and it has been noted that hypothesis (1.2) is valid only for a completely turbulent fluid. Consequently,
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account of the intermittance somewhat changes the equation for the probahility distribution. The equations for
this case were obtained in [10}. According to [9], the effect of intermittance on the velocity probability distribu-
tion is weak, therefore we use (1.2) at all flow points.

We turn now to approximating the functions 7. We separate in them explicifly the gradient of the mean
pressure U = {(Kpydx )P - Sy,

The functions oy are related only to pressure fluctuations and characterize three processes: 1) energy
redistribution of turbulent motion between the different components of the velocity fluctuation vector due to
the nonlinear interaction of velocity fluctuations ¢he contribution of this process to dri is denoted by Flg) )R
2) energy redistribution between different directions, but due to turbulence deformation in the shear average
flow {he corresponding contribution is denoted by ﬂ'}(?)); 3) energy transport in space. Inthe equation of turbu-
lent energy the latter process is described by the expression 8(p‘va>/8xa, p'=p(p), Vk = Wk~ (Ug)), the com-~
ponents of the velocity fluctuation vector. The contribution of this process to ém is denoted by ). Thus,
oMy =7r1g) + rl(f) + n'lg‘)., The third component is the most important in free turbulent flows. It has an essentially
nonlocal character, which generates serious difficulties in approximating it. At the same time, according to
experimental data (see, e.g., [11]), the contribution of the third process fo the total energy balance of turbulent
motion can be neglected in a number of cases. In first approximation it is further assumed that ﬁl(?):O,

Following [12], we assume that the relation between émy and P is described by a differential relation con-
taining the derivatives of P with respect to uy, but not of higher than first order. The last restriction follows
from the fact that in the opposite case the order of Eq. (1.1) is higher than second, and the qualitative structure
of its solution will be determined by the term 9n,/0u,, and not (1/3)<e)d*P/duz. which does not correspond to
contemporary concepts on the important role of the rate of energy dissipation. Furthermore, the relationbe-
tween O and P must be such that the following conditions be satisfied ideutically:

, . ; ap'v dv
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Computational requirements do not allow a unique relation between ém and P. The ultimate choice of
expressions for ény; is made from the condition that the expression for the correlation (p'({®v; /ax]- + 8vj/axi)>
following from it coincide with that used in available semiempirical theories for second moments (see, e.g.,
[13]). We then have (the expression for ”1({1) was earlier derived in [6])
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where Tjj= ViV is the Reynolds stress tensor; o? = T,,/3; T = R-%e)~'¢% , time scale of trubulence; and

R, A, Dy, Dy, and C, empirical constants. They can be related with the second moments in a logarithmic layer,
writing out the latter equations (for this Eq. (1.1) must be multiplied by v;v; and integrated over v) and using
the adopted approximations for ém (1.3), (1.2) (as well known [11], in a logarithmic layer energy diffusion and
convection are negligibly small). After simple calculations, we obtain

D, =1 —R(2{u2 + (#*) —309/c%, Dy=— R 42" — 30%)/c%,
A = [(#?)y (1 — Dy) — (@ Dylio* — 2Ruy[c*, €= — (D1 + Dy)/3,

~ where vy =u, v, =v, v; =w, and u_ is the friction velocity.

In what follows it is convenient to cousider the probability distribution for the velocity fluctuation vector
v. We also denote this distribution by P(v). An equation for P(v) is obtained from (1.1) after transforming to
the new variable v=u—U. Using the averaged momentum equation
DU;/Dt = —d < P>/0-73; - aTioL/a'zcxv.‘ (1 .4)
DIDt = 813t + U y0/0xq

and adopting the approximations for <8ij>u and &y, we obtain
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Here Dij is the diffusion coefficient tensor in phase space. Equations (1.4), (1.5) miist be supplemented by the
continuity equation of the average velocity field div U =0,

The turbulence energy dissipation rate {£) appears in (1.5) as an external parameter, therefore in deter-
mining it, it is necessary to use corresponding experimental data or to solve a semiempirical equation. The

latter is [13]

Dy 24 30? 9 ¢e) \
D = g O = Cea )+ Co (5 Ten 52, (1.6)

7
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Here Cscsp Cgy are empirical constants the relation between them is obtained by considering a logarithmic
layer), and k is the Karman constant.

The properties of Eq. (1.5) depend essentially on the sign definiteness of the matrix Dij and on the direc~
tion of the vector v, since these parameters determine the direction of information transport in phase space.
The direction of v is known ahead of time, but the sign definiteness of the matrix Dij depends, generally speak-
ing, on the coordinates xy. The surfaces on which the sign definiteness of the matrix Djj changes can, in prin-
ciple, be singular. Inthe given case, however, since Dy; ij is independent of v, there exist no restrictions on the
solution on the surfaces mentioned.

Based on Eq. (1.5), we analyze the probability distribution for homogeneous turbulence ({uy)=0). In this
case the equation is

0P[9% — T™9v,P/dv, = (R — 1/3) (&) 6°P/dv?. .7

According to the estimate given in Sec. 2 (R—1/3) > 0, and, consequently, Eq. {1.7) is a parabolic equation
with a positive diffusion coefficient. Assuming dm =0, as was done in [3, 4], Eq. (1.7) transforms fo a parabolic
equation with negative diffusion coefficients, for which, as well known, the Cauchy problem is incorrect. Thus,
account of 7 regularizes the problem.

The general solution of E¢. (1.7) is described by the relation

P(v, )= [G(v, v t, 1) P (v, 1) d%v,, (1.8)
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It follows from (1.8) that the normal distribution retains its form during the process of turbulence degen-
eration. As is easily seen, for the normal distribution 6m, =0. In homogeneous isotropic turbulence the normal
distribution is naturally bounded for all finite t by the solution of Eq. (1.7) for ém =0 [3, 4], which is related to
an inverse parabolic type of equation in this case.

The most important conclusion following from (1.8) is that for t —« the main term in the asymptotic ex~
pansion of the probability distribution is described by the self-similar dependence ((eyt)~¥2F {la] X (ept)y=12],
where F is the isotropic normal distribution, and §my is related with the following terms of this expansion. In
connection with the relation obtained we note that the equation suggested in [5] does not possess this important
property, and information on the initial distribution occurs in the main term at all times.

We mention a simple solution of Eq. (1.5) for the case in which the turbulence energy balance basically
reduces to creation and dissipation. All terms with spatial derivatives can then be neglected in (1.5). By direct
substitution it can be verified that in this approximation the solution of Eq. (1.5) isa normal distribution, whose
moments are related to the equations for the second moments with omitted convection and diffusion terms o
simplify the calculations it is convenient to transform to characteristic functions). The result obtained is in
qualitative satisfactory agreement with experimental data in a logarithmic layer {14, 15].

2. Steady~-State Flow in a Channel. Consider a steady-state turbulent flow in aplanar channel, whose
walls coincide with the walls y=0 and y =H, while the mean velocity components are {u=U{y), {u)={uz =0.
Equations (1.4)-(1.6) acquire the following form in the given case
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The nonvanishing components of the tensor Dij equal to the expressions
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The shear stress distribution (uv), appearing in 2.2}, (2.3), and in the expressions for the components
of the tensor Dij’ are found from .1):

(uvy = uly [(1 + o) y/H —1], o= (u,*llu*o)“;— @2.4)

The subscripts 0 and 1 in 2.4) refer to different channel walls. The velocity gradient dU/dy in 2.2)
{the very velocity defect) is determined from the condition Iu=fuPd3u=0, following from the definition of the
probability distribution of the velocity fluctuations. To show this we multiply 2.2) by I, u, and v successively,
and integrate. As a result we obtain the relations

ar dI, ddury | AU , 1
d; :0,! dlyv _'I dy T, dy Iv"“——'[u’?
a&o® ale®y , y )
dg —_— IO p = S Pdsu, I = Pd u;
I, = 5 uvPd3u.

Since (by the boundary conditions) I, =0 for y =0, y =H, it follows from the first and third relations that
I,=0, [=1,0=<y=<H. Only the condition I, =0 remains nontrivial, allowing to determine dU/dy @we also note
that for I; =0 the integral L, identically equals the expression for (uvy (2.4)).

To solve Eq. (2.2) it is necessary to assign the probability distribution at y =0 and y =H. Since there
exists local equilibrium in a logarithmic layer between turbulence energy dissipation and creation, according
to the results of Sec. 1 the probability distribution is normal at y =0 and y=H. From the existence condition
of moments of any finite order we also have

lim|v|tP = 0, Iv] > co forany E>0.

The probability distribution P depends on four variables, causing substantial difficulties in computational
possibilities of numerical solution of Eq. 2.2). The specific structure of Eq. 2.2) makes it possible to avoid
this situation. E turns out that (2.2) is equivalent to an infinite system of equations for functions of lower di-
mensionality. The first four equations of this system are sufficient for determining the mean velocities and
second moments, These equations, as well as 2.2), are nonlinear integrodifferential equations, and all re-
maining ones are linear (it is interesting that a similar situation is also encountered in the kinetic theory of
gases in considering model equations; see, for example, [16]). All this is also applicable to the semiempirical
equation for the probability distribution obtained in [5], which was earlier used [17] in calculating the planar
Couette flow, when | (u,v) |=u% =const (he solution of (2.2) is a normal distribution in this case).

The first four functions are related to the probability distribution by the following relations:
Py = { Pdudw, T () = [ uPdudw = (uy, Py,
H,(v) = y wPdudw = (), P, H;(v) = 5 wrPdudw = {w*, P,
Integrating (2.2), multiplying by w/w™ (=0, m=0; =1, m =0; [=2, m=0; =0, m =2), the following equa~-
tions are obtained

L(Py) == TPy, I(J) == —8,0Pydv + 8,P,,

2.5
LA ) = T, — 28,00 ‘90 + 28,/ L 8,P,. -2

LULy =Tl 4 S4Py, S, - dUidyID, (2 4 Du?y + Act].

So Adury dy - vdU dy), Sy 2£e¥ B 13 — gD, + OVl

7l

65



) /%’\gr i gl e l Lo ('ww/ B A ’.~ R 7
sy «jhf de, @ - [ePydv, W - [ Hde

The system of equations (2.3), (2.5), supplemented by the condition determining the velocity gradient
Iu_=fuPd3v=dev=O is closed. The moments, not expressed in terms of the functions introduced, are found
from other equations in the system, but after solving Eqgs. 2.3), 2.5). To determine (u3> for example, it is
necessary to introduce the function [uPPdudw, whose equation, as mentioned above, is linear.

To choose an algorithm for numerical solution of Eq. 2.5) it is important that the coefficient in front
of the derivative with respect to the coordinate y change sign. Consequently, despite the fact that 2.5) is a
parabolic equation, both directions in the coordinate y are equally valid. This is explained by the two boundary
conditions in the coordinate y the theory of equations of this type has been extensively developed in recent
years; see, for example, {18]).

For numerical solution of Eq. (2.5) we used a scheme with counter flow differences with second order
approximation in the internal region), making it possible to account quite simply for the equal justification in
the coordinate y noted above. A similar problem for the concentration probability distribution was earlier
solved in [19]. Unlike [19], in the given case the diffusion coefficient Dy, can, generally speaking, change sign
for several y values, which must be taken into account in the finite-difference approximate equations. The
nonlinear system of finite-difference equations thus obtained was solved by an iteration method.

In carrying out the calculations the system {2.3), (2.5) was nondimensionalized: The dimensional velocity
was divided by u,, and the length by H. The boundary condition corresponding to |v| —w« became |v| =
3(V">1/2. In the case w =1, due to the symmetry of the problem a solution was sought in the interval 0 <y/H=<'
0.5. The difference grid in the variable v was chosen uniform, and in the coordinate y — nonuniform, with a
condensation near the walls, as well as for the case w =0.2 and near the point of vanishing shear (y,/H=0.83).
The number of sites in the y coordinate was 51. For « =1 the calculations were carried out with two grid steps
in v, Av=|v|y,/45 and Av =|v| 1;,/90, and practically coinciding values between the results were obtained. For
w =0.2 the calculations were performed with Av = lvlm/45.

For the empirical constants in the calculations we chose the following values: R=0.8 based on experi-
ment {20], Cgy =2; Cg =0,13 by the recommendations of [22], and k=0.41, the standard value of the Karman
constant. The coustants A, Dy, Dy, C, and Cgy were assigned, starting from experimental data, for the second
moments in a logarithmic layer obtained in [14].

It must be noted that in all calculations performed the diffusion coefficient Dy, is positive in the steady-
state solution, though in the iteration process it changes sign multiply.

Figures 1 and 2 show a comparison between calculations and experimental datafor the mean velocities
and second moments in symmetric (@ =1) [14] and nonsymmetric channels {w =0.2) [22], respectively (1 —
Uy —U)/uy, where Uy is the maximum velocity value, and 2 = (u’y; 3 = (v%; 4 — (wh). 1t is seen that in the
calculations one quantitatively reproduces the difference in positions of vanishing shear points (y,/H=0.83)
and the points of vanishing velocity gradient (y,,/H=0.73) for a nonsymmetric channel twhich leads to an effect
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of "negative® viscosity). This effect was obtained in an earlier calculation [21] by means of an equation for
the shear stress ’(uv2>, in which the third moment was approximated by the gradient {uv®) ~ — (6*/{ed)d(uv)/dy.
‘We note that the calculation of all second moments in available semiempirical equations for channel flows has,
obviously, not yet been carried out, and at the very least there exist no corresponding data in the literature.

We turn now to results of calculating moments of third and fourth order and their comparison with ex-~
perlmental data. Figure 1 shows results of calculating third moments in a symmetric channel 6 — (vu) 6 —
(Vw Y T (v uy ). Corresponding experimental data were not found in the literature. The results of comparing
the calculated and experimental data for the symmetric channel [14] are given in Fig. 3 for the asymmetry and
excess coefficients (1 — Ays 2 —Ay; 3 ~Eys 4 — Ey; 5 — Eyw, Where A and E are, respectively, tt.e asymmetry
and excess coefficients, and the meaning of the lower subscript is that of the accepted notation for the velocity
fluctuations). Figures 4 and 5 show the calculated and experimental data in a nonsymmetric channel [22] (on
Fig. 4, 1 = (vudy; 2 — ¢vw?; 8 — (v?u); and on Fig. 5 the notation coincides with that of Fig. 3). The experimental
data on Figs. 1-3 from [14] were obtained for Reynolds number Re =U,H/2r =230,000 (U is the mean velocity,
determined from the flow rate), and from [22] —for Re = UMH/ZV 56, (%)OO and the data on Figs. 4 and 5 were
taken from [22] for Re =36,500,

Analysis of Figs. 1-5 shows that as a whole the coincidence of calculated and experimental data can be
assumed quite satisfactory. The data presented on moments, as well as the analysis of the calculated probability
distributions, show that in the problem under consideration they are quite close to normal. At the same time,

a deviation of the distribution from normal law is important, since only this deviation causes a redistribution
of turbulence energy in y. The results of comparing calculated and experimental data make it possible to con-
clude that the suggested equation for the probability distribution truly describes the qualitative features of this
deviation.

The results obtained in thiswork made it possible, in principle, to state and solve more complicated prob-
lems than considered here, such as the description of nonequilibrium turbulent flows with significant deviations
of the probability distribution from the normal distribution. Additional difficulties will primarily be associated
with computer possibilities. The main qualitative features and mathematical properties of the equation obtained
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for the velocity probability distribution were analyzed in this work., This analvsis {s a necessary preliminary
step prior to solving more complicated problems. The author is deeply grateful to V. M, Iavlev for positive
criticism, useful comments, and support, and to V. R. Kuznetsov for a number of critical comments.
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